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Abstract
We present controllability results for quantum systems interacting with lasers.
Exact controllability for the wavefunction in these bilinear systems is proved
in the finite-dimensional case under very natural hypotheses.

PACS number: 32.80.Qk

1. Introduction

Controlling chemical reactions at the quantum level is a long-lasting goal (cf [1–11]) going
back to the very beginning of laser technology. Due to the subtle nature of the interactions
involved, manipulation of quantum dynamics is expected to allow for finer control than
classical tools (e.g. temperature and pressure) and possibly for new reactions and/or products.
Controlling quantum phenomena also goes beyond chemical reactions to encompass many
other applications [11].

The earliest experiments showed that designing a laser pulse capable of steering the
system to the desired target state is a rather difficult task that physical intuition alone generally
cannot accomplish. It is only recently that tools from control theory were introduced and
began to give satisfactory results in some particular cases; finding the optimal laser electric
field as a design objective is treated by numerical methods and a need exists for new methods
that are reliable and computationally inexpensive. A legitimate question arises in this context:
what quantum states can be attained using such an external field? Some answers are given
below for finite-dimensional quantum systems; a number of theorems in this work are proved,
which have been previsously cited including applications [12, 13]. The reader is referred
to [13–17] for additional works on this subject, where other controllability definitions are
introduced.
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2. Dynamical equations

This section introduces the general infinite-dimensional equations for controllability analysis;
their discretization is discussed in the next section. Consider a quantum system without
control interaction with internal Hamiltonian H0 and prepared in the initial state �0(x) where
x ∈ Rγ denotes the relevant coordinate variables; the state �(x, t) at time t satisfies the
time-dependent Schrödinger equation

ih̄
∂

∂t
�(x, t) = H0�(x, t) �(x, t = 0) = �0(x) ‖�0‖L2(Rγ ) = 1. (1)

In the presence of an external interaction, taken here as an electric field modelled by a
laser amplitude ε(t) ∈ R coupled to the system through a time-independent dipole moment
operator B,4 the (controlled) dynamical equations become

ih̄
∂

∂t
�ε(x, t) = H0�ε(x, t) + ε(t) B�ε(x, t) = H�ε(x, t) �ε(x, t = 0) = �0(x). (2)

In order to avoid trivial control problems we suppose [H0,B] �= 0, where the Lie bracket [·, ·]
is defined as [U,V ] = UV − V U .

The goal is to find, if any, final time T > 0 and finite energy laser pulse ε(t) ∈ L2([0, T ])
exist such that ε(t) is able to steer the system from �0(x) to some predefined target
�ε(x, T ) = �target(x). If the answer to this question is affirmative for any target �target,
then the system is called controllable. Given that H is Hermitian one can easily prove that the
L2 norm of �ε is conserved throughout the evolution

‖�ε(x, t)‖L2
x (Rγ ) = ‖�0‖L2(Rγ ) ∀t > 0. (3)

Note that �ε(x, t) evolves on the unit sphere S(0, 1) of L2(Rγ ):

S(0, 1) = {f ∈ L2(Rγ ); ‖f ‖L2(Rγ ) = 1}.

3. Finite-dimensional system

Let D = {�i(x); i = 1, . . . , N} be the set of the first N,N � 3 eigenstates of the infinite-
dimensional Hamiltonian H0, let M be the linear space they generate, and let A and B be the
matrices of the operators H0 and B respectively, with respect to this base; as in the infinite-
dimensional setting it is supposed that [A,B] �= 0. Negative generic results concerning
infinite-dimensional controllability (cf [20–23]) are available that show the need for tailored
controllability concepts and for a good understanding of the finite-dimensional case; moreover,
the existence of intrinsically finite-dimensional quantum situations (‘N-level’ systems, spin
systems, etc) motivates a finite-dimensional analysis.

We denote C = (ci)
N
i=1 as the coefficients of �i(x) in an expansion of the evolving state

�(t, x) = ∑N
i=1 ci(t)�i(x); equation (2) now becomes

ih̄
∂

∂t
C = AC + ε(t)BC C(t = 0) = C0 (4)

C0 = (c0i)
N
i=1 c0i = 〈�0,�i〉

N∑
i=1

|c0i |2 = 1. (5)

4 Depending on the problem, one may choose to go beyond this first-order, bilinear term when describing the
interaction between the laser and the system (cf [18, 19]).
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The controllability of equation (4) has been dealt with before (cf [24, 25], see also [26] for an
overview of the topic) by considering the problem of a system posed on the space of the unitary
matrices of dimension N. This approach has the benefit of drawing on the general tools and
results from bilinear controllability on Lie groups. However, verifying those criteria becomes
computationally very difficult when N is large; moreover, this approach does not readily
illuminate the very simple and intuitive phenomena often at work. The goal of this paper
is to provide easy-to-utilize sufficient conditions for the controllability of the wavefunction;
these conditions will be expressed only in terms of the readily identified physical properties
of the system. This work is a complement to the previous analysis, as the use of stronger
(but generally less intuitive) results coming from the theory of controllability on Lie groups is
unavoidable in some cases where the present results do not apply. For similar results obtained
in the Lie algebra framework the reader is referred to [13].

We remark that the matrix A is diagonal and we make the common assumption that the
matrix B is real symmetric (Hermitian). We denote λi ∈ R, i = 1, . . . , N, as the diagonal
elements of A (the energies of the states �i). With the notation SM(0, 1) = S(0, 1) ∩ M ,
it was previously stated that the system evolves on SM(0, 1), which in a finite-dimensional
representation reads

N∑
i=1

|ci(t)|2 = 1 ∀t � 0. (6)

4. Connectivity graph and necessary conditions

The B matrix plays the critical role of specifying the kinematic coupling amongst the
eigenstates of the system reference Hamiltonian matrix A. We associate with the system
a graph G = (V ,E) called the connectivity graph (we refer the reader to [27] for graph theory
concepts). We define the set V of vertices as the set of eigenstates �i and the set of edges
E as the set of all pairs of eigenstates coupled by the matrix B. Since B is symmetric we can
consider G as non-oriented:

G = (V ,E) : V = {�1, . . . , �n} E = {(�i,�j); i �= j, Bij �= 0}. (7)

We may decompose this graph into (connected) components Gα = (Vα,Eα), a =
1, . . . ,K . Note that this decomposition corresponds to a block-diagonal structure of the
matrix B (modulo some permutations on the indices). From the definition of G and using
equation (4) (A is diagonal) it follows that

ih̄
∂

∂t

∑
{i;�i∈Vα}

|ci(t)|2 = 0. (8)

Using equation (8) one can write new conservation laws for each component:∑
{i;�i∈Vα}

|ci(t)|2 = constant ∀t > 0 α = 1, . . . ,K. (9)

Denote by U(A,B, ε, t1 → t2) the propagator associated with equation (4); for any state
χ(t1), U(A,B, ε, t1 → t2)χ(t1) is defined as the solution at time t = t2 of equation (4) with
the initial state at time t = t1 being χ(t1).

Definition 1. We say that �2 is reachable from �1 if there exists 0 < T < ∞, ε(t) ∈
L2([0, T ]; R) such that U(A,B, ε(t), 0 → T )�1 = �2.

This allows us to give necessary conditions for controllability:
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Lemma 1. If the state χ = ∑N
i=1 di�i(x) is reachable from the initial configuration C0 then∑

{i;�i∈Vα}
|c0i|2 =

∑
{i;�i∈Vα}

|di|2 α = 1, . . . ,K. (10)

In order to simplify the presentation of the results we will introduce the following
hypothesis:

HA The graph G is connected, i.e. K = 1.

The assumption HA is not restrictive, it is just a matter of specifying the number of independent
subsystems we want to simultaneously control (see [23] and [33] for the general case). Note
also that this does not imply that any two states are directly connected one with another, but
only that for any two states �i and �j there is a path in the graph G that connects �i and �j .

5. Controllability

We denote ωkl = λk − λl, k, l = 1, . . . , N as the eigenvalue differences for the matrix A, and
atomic units (h̄ = 1) will be utilized. Consider the hypothesis:

HB The connectivity graph G does not have ‘degenerate transitions’, that is for all
(i, j) �= (a, b), i �= j, a �= b such that Bij �= 0, Bab �= 0: ωij �= ωab.

Remark 1. In all that follows this hypothesis could be relaxed to

HC The connectivity graph G remains connected after elimination of all edge pairs
(�i,�j), (�a,�b) such that ωij = ωab (degenerate transitions).

However, for ease of presentation HB will be assumed to be true.

We also introduce one more hypothesis:

HD For each i, j, a, b = 1, . . . , N such that ωij �= 0: ωab

ωij
∈ Q, where Q is the set of all

rational numbers.

Remark 2. The assumption HD implies that there exists a T > 0 such that U(A,B, 0, 0 →
T ) = e−iT A = I (i.e., the free evolution is periodic). Note that HD is in particular verified if
λi ∈ Q, i = 1, . . . , N , which is often the case in practice (e.g., [31]). For an interpretation of
this hypothesis in terms of ‘wave-packet revival’ see [28–30]. Moreover, the controllability
result remains true without HD, as is proven in the appendix (also see [23]).

We will conclude with a simple but important remark: the reverse (i.e., the same dynamics
but with time reversed) of the system (4) given by (A,B, ε(t)) is equivalent to a system of the
same kind (−A,−B, ẽ(t) = ε(−t)), such that

(U(A,B, ε(t), t1 → t2))
−1 = U(−A,−B, ε(−t),−t2 → −t1).

We call (A,B, ε(t)) the ‘direct system’ and (−A,−B, ẽ(t)) the corresponding ‘reverse
system’.

The goal is to prove that under hypotheses HA, HB, HD the system is controllable, i.e.
for any �1 ∈ S(0, 1) ∩ M the set of reachable states from �1 is S(0, 1) ∩ M . The proof has
two parts: local controllability and global controllability.
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5.1. Local controllability

We begin by introducing two particular subsets of M; if the graph G admits a bipartite
decomposition V = P1 ∪ P2, P1 ∩ P2 = ∅, P1 �= ∅, P2 �= ∅, E ⊂ P1 × P2 denote

X =

χ =

N∑
i=1

wi�i;
∑
i∈P1

λi |wi|2 =
∑
j∈P2

λj |wj |2

 . (11)

If G does not have a bipartite decomposition (thus it has at least one odd-length cycle, see
[27], p 24) set X = ∅. We also introduce the set Z:

Z =
{

� =
N∑

i=1

ci�i; ∃i : ci = 0

}
. (12)

Theorem 1. Let � ∈ SM(0, 1)\X\Z. Under the assumptions HA, HB, HD the set of
reachable states from � is a neighbourhood of � (in the canonical topology of SM(0, 1)).
The same result is true for the reverse system, that is, the set of states from which � can be
reached is a neighbourhood of � .

Proof. We will use on M its real Hilbert space structure (and not the canonical complex Hilbert
space structure) given by the scalar product:

〈χ1, χ2〉R = Re(〈χ1, χ2〉) = 1
2 (〈χ1, χ2〉 + 〈χ2, χ1〉). (13)

Consider the mapping S : L2(R)× R → M given by S(ε, t) = U(A,B, ε, 0 → t)� . We
want to prove that S(L2(R) × (0,∞)) is a neighbourhood of � . Note that there exists T such
that S(0, T ) = � (here T is the value given in remark 2 that satisfies U(A,B, 0, 0 → T ) = I )
and that S is differentiable in (0, T ) (see [20]). Therefore, it suffices to prove that the differential
DS of S in (0, T ) is onto the tangent plane P in � at SM(0, 1) given by the equation

P = {χ ∈ M : 〈χ,�〉 + 〈�,χ〉 = 0}. (14)

Since the image of the differential is a linear space, it is enough to prove that the only
χ ∈ M such that

〈DS(ε,t)=(0,T )(ε, t), χ〉R = 0 ∀(ε, t) ∈ L2(R) × R

〈χ,�〉R = 0
(15)

is χ ≡ 0. Let χ satisfy (15). Denote by DSε the differential of S with respect to ε in (0, T )

and by DSt the differential of S with respect to t in (0, T ). Then (see also [20])

DSε(ẽ) = −i
∫ T

0 e−iA(T −s)ẽ(s)B eiA(T −s)� ds

DSt = −iA�.
(16)

So (15) is equivalent to:

Im(〈e−iA(T −s)B eiA(T −s)�, χ〉) = 0 ∀0 < s < T

Im(〈A�,χ〉) = 0 (17)

Re(〈�,χ〉) = 0.

Denote � = ∑
i ci�i, χ = ∑

i wi�i . Making use of the hypothesis HB as in [32] we obtain

Bab(cawb − cbwa) = 0 ∀1 � a < b � N (18)
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Re

(
N∑

a=1

cawa

)
= 0 (19)

Im

(
N∑

a=1

λacawa

)
= 0. (20)

Equation (18) implies that for each a, b such that Ba,b �= 0

wa

ca

=
(

wb

cb

)
. (21)

Since the connectivity graph is fully connected we obtain easily that there exists a complex
constant α such that for each 1 � a � N wa = αca or wa = αca. If G is not bipartite then it
has an odd-length cycle. Using (21) along this cycle one obtains α ∈ R so χ = α� and by
(19) it follows that α = 0 so χ ≡ 0.

If G is bipartite with decomposition V = P1 ∪ P2 we conclude from (21) that

wa = αca ∀a ∈ P1 wa = αca ∀a ∈ P2. (22)

From (19) and (20) one concludes that either α = 0 (so χ ≡ 0) or � ∈ X. Replacing
(A,B, ε(t)) by (−A,−B, ε(−t)) one obtains the second part of the theorem. �

5.2. Global controllability

Theorem 2. Under the assumptions HA, HB, HD the system (4) is controllable, that is for
any � ∈ SM(0, 1) the set of reachable states from � is SM(0, 1); the same result is true for
the reverse system.

Proof. The proof is based on the following lemmas: �

Lemma 2 (‘exit lemma’). For any � ∈ SM(0, 1) there exists at least one state in SM(0, 1)\X\Z
that can be reached from �; the same is true for the reverse system.

Lemma 3 (‘pass lemma’). If X �= ∅ then, in any given open (for the canonical topology of
X ∩ SM(0, 1)) subset V of X ∩ SM(0, 1) there exists a ‘pass state’ γ ∈ V \Z such that from
γ one can reach at least one point in any (of the two) local in γ connected components of
SM(0, 1)\X separated by X; moreover, these points can be chosen not to be in Z; the same is
true for the reverse system.

Suppose lemmas 2 and 3 are both true; suppose also X �= ∅ (the simpler alternative
X = ∅ follows along the same lines). By the ‘exit lemma’ it is enough to prove (for the direct
and inverse system) that for any � ∈ SM(0, 1)\X\Z the set of reachable states from � is
SM(0, 1)\X\Z. That is, use the lemma for the direct system to reach a state in SM(0, 1)\X\Z,
and use it once more for the reverse system to obtain a state in SM(0, 1)\X\Z from which
the target can be reached and in the ‘middle’ use the controllability from SM(0, 1)\X\Z to
SM(0, 1)\X\Z. The proof proceeds in two steps.

(i) Suppose the initial state φ and target δ are in the same connected component of
SM(0, 1)\X. Then there exists a continuous curve C(t) : [0, 1] → SM(0, 1)\Z\X
with C(0) = φ,C(1) = δ. We will prove that each C(t), t ∈ [0, 1] is reachable from φ.
We denote by η the minimal value of t such that C(t) is not reachable from φ. By the
local controllability result for the state φ we obtain η > 0. Since C(η) ∈ SM(0, 1)\Z\X
one can apply the local result for the reverse system in C(η) and deduce that there exists
η′ < η such that C(η) is reachable from C(η′). But, by the minimal property of η, C(η′)
is reachable from φ so by transitivity C(η) is also reachable from φ.
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(ii) Let the initial state φ and target δ be in different connected components of SM(0, 1)\X.
For the sake of simplicity suppose that the connected components are adjacent (two
components are called adjacent if the intersection of their frontiers has a non-void interior
in the canonical topology of SM(0, 1) ∩ X), the general case being a mere reiteration of
the arguments below. It can be proved, see also the discussion on the geometry of the set
X below, that any two components of SM(0, 1)\X can be linked by a chain of adjacent
components. Then there exists a ‘pass state’ γ ∈ X\Z given by lemma 3 on the boundary
of the two connected components. By the properties of a ‘pass state’ there exist two states
φ′ (in the same component as φ) and χ ′ (in the same component as χ) and an electric
field such that the corresponding evolution starting from φ′ passes by γ and arrives at χ ′.
Since by the previous case φ′ is reachable from φ and χ from χ ′, an electric field realizing
an evolution φ → φ′ → γ → χ ′ → χ can be found, and therefore χ is reachable from
φ, which concludes our proof.

Before giving proofs for the lemmas above let us denote by Di the L2 projector to
�i, i = 1, . . . , N and by O the operator

∑
i∈P1

λiDi − ∑
j∈P2

λjDj . We make use of
the classical ‘bra-ket’ notation for self-adjoint operators V (such as O,Di): 〈χ1|V |χ2〉 :=
〈χ1, V χ2〉 = 〈V χ1, χ2〉. We obtain the following characterizations

X = {χ; 〈χ |O|χ〉 = 0} Z =
N⋃

i=1

{χ; 〈χ |Di |χ〉 = 0}. (23)

Note also [H0,O] = [H0,Di] = 0, i = 1, . . . , N , but [B,O] �= 0, [B,Di ] �= 0, i =
1, . . . , N . We will use the same notation for the matrices of these operators with respect to
the base D.

Proof of lemma 2. (a) We begin by proving that for any k = 1, . . . , N , χ ∈ SM(0, 1), η > 0,
and τ > 0 there exists at least an ε(t) ∈ L2(0, τ ), ‖ε‖L2 < η: such that

{U(A,B, ε(t), 0 → s)χ; 0 � s � τ }\D−1
k {0} �= ∅. (24)

Denote U(A,B, ε(t), 0 → s)χ = χ(s) = ∑N
l=1 cl(s)�l as the solution of (4). Suppose (24)

is not true, then ck(s) vanishes on [0, τ ] as well as all its derivatives, for any smooth electric
field ε(t) ∈ C∞ ∩ L2(0, τ ), ‖ε‖L2 < η. We obtain to first order:

i
d

dt
ck(s) = ε(s)

N∑
j=1

Bkj cj (s) = 0 ∀s ∈ [0, τ ] ε(t) ∈ C∞ ∩ L2(0, τ ) ‖ε‖L2 < η.

(25)

Take εn(t) = η

n
√

τ
and denote by χn(s) = ∑N

l=1 cnl(s)�l the corresponding evolution. Since
εn(s) �= 0 on [0, τ ] it follows that

N∑
j=1

Bkjcnj (s) = 0 0 � s � τ n = 1, . . . . (26)

For n → ∞ the limiting trajectory is the free evolution cj (s) = e−iλj scj (0), therefore

N∑
j=1

Bkjcj (s) =
N∑

j=1

Bkj e−iλj scj (0) = 0 0 � s � τ. (27)

By the hypothesis HB this can be true only if cj (0) = 0 for all j connected to k in G
(Bkj �= 0, j �= k). Selecting the initial time arbitrarily in [0, τ ] one obtains that for
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any ε(t) ∈ L2([0, τ ]), ‖ε‖L2 < η and corresponding evolution U(A,B, ε(t), 0 → s)χ =
χ(s) = ∑N

l=1 cl(s)�l the coefficient cj (s) is zero for all s ∈ [0, τ ] and all j connected to
k in G. Repeating this reasoning as many times as necessary (starting each time from the
newly obtained zero coefficients) and using the connected graph structure of B it follows that
cj (s) = 0, 0 � s � τ, j = 1, . . . , N , which is in obvious contradiction with χ ∈ SM(0, 1).

(b) An immediate consequence of the assertion (24) is that for each state χ ∈ SM(0, 1)

and each neighbourhood V of χ there exists a reachable state from χ that is not in Z.
(c) Since Z is a closed set, all that remains to prove is that for any state χ ∈ SM(0, 1)\Z

and neighbourhood V of χ there exists at least one reachable state from χ in V ∩SM(0, 1)\X.
Suppose that this is not true; then there exists χ ∈ SM(0, 1)\Z, η > 0, and τ > 0 such

that for any ε(t) ∈ L2(0, τ ), ‖ε‖L2 < η:

〈U(A,B, ε(t), 0 → s)χ |O|U(A,B, ε(t), 0 → s)χ〉 = 0 ∀s ∈ [0, τ ]. (28)

Denote U(A,B, ε(t), 0 → s)χ = χ(s) = ∑N
l=1 cl(s)�l as the solution of (4) and

O(t) = 〈χ(t)|O|χ(t)〉. Then for any ε(t) ∈ L2(0, τ ), ‖ε‖L2 < η, O(t) and all its derivatives
vanish in [0, τ ]. To compute the first derivative use the formula for the evolution of an
observable represented by a matrix V : V (t) = 〈χ(t)|V |χ(t)〉:

d

dt
V (t) = 〈χ(t)|i[A,V ]|χ(t)〉 + ε(t)〈χ(t)|i[B,V ]|χ(t)〉. (29)

Denote J = [B,O]; there exists a �= b such that Jab �= 0, Bab �= 0 and for V = O in (29):

d

ds
O(s) = ε(s)〈χ(s)|iJ |χ(s)〉 = 0 ∀s ∈ [0, τ ] ε(t) ∈ C∞ ‖ε‖L2 < η. (30)

Using the same technique as above one concludes that

JijRe(ci(s)cj (s)) = 0 i �= j i, j = 1, . . . , N ∀s ∈ [0, τ ] (31)

so finally

Re(ca(s)cb(s)) = 0 ∀s ∈ [0, τ ] ∀ε(t) ∈ L2(0, τ ) ‖ε‖L2 < η. (32)

It suffices to note that 2 Re(ca(s)cb(s)) = 〈ca(s), cb(s)〉 + 〈cb(s), ca(s)〉 is (a particular
observable) not conserved by the free evolution (ε(t) ≡ 0), so (32) cannot be true. �

Proof of lemma 3. We begin with some geometry considerations concerning the set X.
Following the definition (23) denote by f : SM(0, 1) → R the function f

(∑N
i=1 zi�i

) =∑
i∈P1

λi |zi|2 − ∑
j∈P2

λj |zj |2. Then X = f −1{0}. The differential Df of f never vanishes
in general and vanishes only on KD = {eiφ�k; 0 � φ � 2π} if some λk = 0, so for any
open set V1 ∈ SM(0, 1) ∩ X there exists a subset V2 ⊂ V1 such that Df never vanishes on V2;
locally on V2 only two connected components f −1(]0,∞[)∩ V2 and f −1(] − ∞, 0[) ∩ V2 are
present and globally KD does not introduce new connected components. For any two points
φ, δ ∈ SM(0, 1)\X there exists a continuous curve from φ to δ that does not intersect KD, the
real codimension of KD in X being at least 2. We can therefore suppose V ∩ KD = ∅.

Let χ(s) be the solution of (4) for initial data χ(0) and electric field ε(t). By the definition
of X (cf (23)) the local connected components separated by X in SM(0, 1) correspond to regions
where the observable O has constant sign. In order to prove this lemma it is therefore enough
to find a γ ∈ V \Z such that 〈γ |[B,O]|γ 〉 �= 0, with at least one state in each connected
component being then reached from γ by choosing the apropriate sign for ε(0). Since
V \Z �= ∅ there exists γ ′ ∈ V \Z. Note as above by J the matrix representation of [B,O]
in the basis D and find a �= b such that Jab �= 0. Choose τ such that the free evolution
γ ′(s) = ∑N

i=1 gi(s)�i of a system starting from γ ′(0) = γ ′ ∈ X does not exit V \Z before
time s = τ (when the laser is off the system is guaranteed to remain in X). We have seen before
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that the equality Re(ga(s)gb(s)) = 0 is not conserved during the free evolution, so we may also
suppose Re(ga(0)gb(0)) �= 0. If at least one s ∈ [0, τ ] is found such that 〈γ ′(s)|J |γ ′(s)〉 �= 0
the lemma is proved; if this is not true, note that Jij �= 0 only when Bij �= 0 and use the
formula for the free evolution and the hypothesis HB to obtain that Jab Re(ga(0)gb(0)) = 0,
which is a contradition. �

Remark 3. Even when the Hamiltonian matrix A does not comply with HB, theorem 2
may still be used; it suffices to find a µ ∈ R such that the eigenvalues of A + µB satisfy HB,
apply theorem 2 for the system (A + µB,B) (eventually after having applied a rotation so that
A + µB is diagonal) and obtain a field ẽ(t); the answer is then the field ẽ(t) + µ as the system
(A + µB,B, ẽ) is equivalent to (A,B, ẽ(t) + µ).

For completeness we mention the following result obtained in collaboration with Mathieu
Pilot; note that here we do not make use of the hypothesis HD (see [23], p 167) :

Theorem 3. Under the assumptions HA, HB the system (4) is controllable, that is for any
� ∈ SM(0, 1) the set of reachable states from � is SM(0, 1); the same result is true for the
reverse system.

6. Discussion and conclusions

Wavefunction controllability of finite-dimensional bilinear quantum systems was analysed and
sufficient conditions were found under reasonable physical hypothesis on the system under
consideration. Under hypothesis HB the only restrictions on the attainable set appear from
conservation laws (equation (10)) in effect. The status of the hypothesis HB is more subtle;
in certain cases its removal brings about new conservation laws (that will necessarily contract
the attainable set) very different from those in equation (10). On the other hand, an analysis
of the case N = 3 leads us to state the following

Conjecture. As long as no new conservation laws—besides L2 norm conservation—appear,
the system is controllable, i.e. any state on the unit sphere can be reached (in finite time and
with finite laser energy) from any other.

The merit of the formulation above is intrinsically related to the properties of the systems
and not on their mathematical transcription. The existence of conservation laws possibly may
prevent controllability or correspondingly just restrict the set of attainable states (i.e., if the
necessary conditions thus introduced are also sufficient). On the other hand, we remark that
in some cases, in the absence of HB, conservation laws may involve quantities that are not
necessarily observables.

At the numerical level, various tools are available in order to find a control that drives the
system to some predetermined goal especially through the optimal control formalism [33–36].
We point out that, since these tools do not provide any a priori indication on how close the
system can be steered to the target, the controllability criteria enunciated above are important
ingredients in assessing the quality of the numerical results.
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Appendix. Proof of theorem 2 without the use of hypothesis HD

The aim of this appendix is to prove theorem 2 in the absence of the hypothesis HD; this proof
was obtained in collaboration with Mathieu Pilot from CERMICS-ENPC, Champs sur Marne,
77455 Marne la Vallee Cedex, France.

We have seen that hypothesis HD implies that the free evolution is periodic, i.e. there
exists a T > 0 such that U(A,B, 0, 0 → T ) = e−iT A = I . Suppose now the hypothesis HD

is not true. Let us remark that due to the finite dimensionality of the system the following
quasi-periodicity property is true:

Lemma 4. For each η > 0,M > 0, there exists Tη > M such that ‖e−iTηA − I‖ < η.

Proof. Let T > 0 and consider the set {e−i(n·T )A; n ∈ N}. Then one of the following
alternatives is true:

(i) there exist p �= q ∈ N such that e−i(p·T )A = e−i(q·T )A;
(ii) for any p �= q ∈ N, e−i(p·T )A �= e−i(q·T )A.

If the first case is true then, supposing p > q , we obtain the periodicity: e−i((p−q)·T )A = I

so in particular lemma 4 is true with Tη independent of η: Tη = (p−q) ·T . If Tη < M choose
a multiple of Tη large enough.

If the second case is true, note that all matrices in the set {e−i(n·T )A; n ∈ N} are unitary,
so in particular their Euclidean norms are bounded. Then, considering for any η > 0 the
union of balls B(e−i(n·T )A, η) of radius η centred around each element of the infinite set
{e−i(n·T )A; n ∈ N} it is clear that there exists at least a pair of balls centred in e−i(pη·T )A and
e−i(qη·T )A with pη − qη > M

T
having non-empty intersection, otherwise their union will have

infinite Lebesque measure, in contradiction with the statement above (we denote by B(x, r)

the ball of centre x and radius r in the canonical metric of the finite-dimensional state space).
Thus we obtain pη, qη ∈ N such that ‖e−i(pη·T )A − e−i(qη·T )A‖ � η. But since

e−i(qη·T )A is unitary it follows ‖e−i(pη·T )A − e−i(qη ·T )A‖ = ‖(e−i((pη−qη)·T )A − I) · e−i(qη ·T )A‖ =
‖(e−i((pη−qη)·T )A − I)‖ · ‖e−i(qη ·T )A‖ = ‖(e−i((pη−qη)·T )A − I)‖ which gives the conclusion for
Tη = (pη − qη) · T . �

The controllability result in theorem 2 uses the periodicity hypothesis only by the
intermediary of the local controllability in theorem 1. Therefore, in order to prove that
theorem 2 remains valid in the absence of HD all that is to be proved is that theorem 1 remains
valid in the absence of HD. Let us remark that in the absence of HD the local result reads:

Lemma 5. Let � ∈ SM(0, 1)\X\Z, and suppose that the graph associated with the coupling
matrix B is connected and has no degenerate transitions. Then, for any T > 0 the set of
reachable states from � contains a sphere of radius rT,� (in the canonic metric of SM(0, 1))
centred around e−iT A� .

Let then � ∈ SM(0, 1) be given and find T0 such that

‖e−i(T +T0)A − I‖ � rT,�

2
. (A.1)

Note that by equation (A.1) B
(
�,

rT,�

2

) ⊂ B(e−i(T +T0)A�, rT,�). Consider a target state
y ∈ B

(
�,

rT,�

2

)
y ∈ B(e−i(T +T0)A�, rT,�), so that eiT0Ay ∈ eiT0AB(e−i(T +T0)A�, rT,�); since

the internal Hamiltonian evolution is unitary we obtain

eiT0AB(e−i(T +T0)A�, rT,�) = B(e−iT A�, rT,�).
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By lemma 5 it follows that eiT0Ay is reachable from � ; but y is reachable from eiT0Ay by the
free evolution (for final time equal to T0) so we conclude that y is reachable from � , which
proves the following local result:

Theorem 4. Let � ∈ SM(0, 1)\X\Z, and suppose that the graph associated with the coupling
matrix B is connected and has no degenerate transitions. Then the set of reachable states from
� is a neighbourhood of � (in the canonic topology of SM(0, 1)). The same result is true for
the reverse system.

Finally, let us mention for the sake of completeness the global result that can be proved from
this local controllability theorem:

Theorem 5. Suppose that the graph associated with the coupling matrix B is connected and
has no degenerate transitions. Then the system (4) is controllable, that is for any � ∈ SM(0, 1)

the set of reachable states from � is SM(0, 1); the same result is true for the reverse system.
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